ACRC

ACRC
Speaker:

Dr. Prof. Massimo Alioto

Affiliation:

National University of Singapore

Circuits and architectures with ultra-wide power-performance adaptation – going way beyond voltage scaling

Wide power-performance adaptation down to nWs has become crucial in always-on nearly real-time and energy-autonomous SoCs that are subject to wide variability in the power availability and the performance target. Wide adaptation is indeed a prerequisite to assure continuous operation in spite of the widely fluctuating energy/power source (e.g., energy harvester), and to grant swift response upon the occurrence of events of interest (e.g., on-chip data analytics), while maintaining extremely low consumption in the common case. These requirements have led to the strong demand of SoCs having an extremely wide performance-power scalability and adaptation, so that they can relentlessly operate without interruption in spite of the highly-uncertain power availability. In this talk, new directions to drastically extend the performance-power scalability of digital, analog and power management circuits and architectures are presented. Silicon demonstrations of better-than-voltage-scaling adaptation to the workload are illustrated for both the data path (i.e., microarchitecture) and the clock path in the digital sub-system. New directions to achieve full-system coordinated power-performance scaling are also discussed. Silicon demonstrations and trends in the state of the art of battery-light, battery-less and battery-indifferent SoCs are illustrated to quantify the benefits offered by wide power-performance adaptation, identifying opportunities and challenges for the decade ahead. Finally, an always-on mm-scale integrated system that operates uninterruptedly when solely powered by moonlight is demonstrated, paving the way to a new generation of always-on systems with little to no battery. Where: Zoom session, link will be provided after the registration Registration: http://acrc.net.technion.ac.il/registration-massimo-alioto/

Date: Tue 02 Mar 2021

Start Time: 11:00

End Time: 12:00

Zoom meeting | Electrical Eng. Building